The Lead Dioxide Anode. II. The Kinetics and Participation of the Lead Dioxide Electrode in Electrochemical Oxidation Reactions in Sulfuric Acid

Author:

Randle TH,Kuhn AT

Abstract

Lead dioxide is a strong oxidizer in sulfuric acid, consequently electrochemical oxidation of solution species at a lead dioxide anode may occur by a two-step, C-E process (chemical oxidation of solution species by PbO2 followed by electrochemical regeneration of the reduced lead dioxide surface). The maximum rate of each step has been determined in sulfuric acid for specified lead dioxide surfaces and compared with the rates observed for the electrochemical oxidation of cerium(III) and manganese(II) on the same electrode surfaces. While the rate of electrochemical oxidation of a partially reduced PbO2 surface may be sufficient to support the observed rates of CeIII and MnII oxidation at the lead dioxide anode, the rate of chemical reaction between PbO2 and the reducing species is not. Hence it is concluded that the lead dioxide electrode functions as a simple, 'inert' electron-transfer agent during the electrochemical oxidation of CellI and MnII in sulfuric acid. In general, it will most probably be the rate of the chemical step which determines the feasibility or otherwise of the C-E mechanism.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3