Simulating the vertical transition of soil textural layers in north-western China with a Markov chain model

Author:

Li Danfeng,Shao Ming'an

Abstract

The heterogeneity of textures in soil profiles is important for quantifying the movement of water and solutes through soil. Soil-profile textures to a depth of 300 cm were investigated at 100 sites in a 100-km2 area in the central region of the Heihe River system, where oases coexist with widespread deserts and wetland. The probability distribution of textural-layer thickness was quantified. The vertical transition of the soil textural layers was characterised by a Markov chain–log-normal distribution (MC-LN) model based on the probability of one textural type transitioning to another. Nine types of textural layers were observed: sand, loamy sand, sandy loam, silt loam, loam, clay loam, silty clay loam, silty clay, and clay. Sand was the most frequent in the profiles, whereas silt loam and clay were rare. The layers of sand and silty clay were relatively thick, and the layers of loam and clay were relatively thin. The coefficients of variation ranged from 36–87%, indicating moderate variation in the layer thickness of each textural type. The soil profile was characterised as a log-normal distribution. A χ2 test verified the Markov characteristic and the stability of the vertical change of soil textural layers. Realisations of the soil textural profiles were generated by the MC-LN model. A Monte Carlo simulation indicated that the simulated mean layer thickness of each textural type agreed well with the corresponding field observations. Element values of the transition probability matrix of the textural layers simulated by the MC-LN model deviated <12.6% from the measured values, excluding the data from the layers of clay and silt loam. The main combinations of upper to lower textural layers in the study area were loamy sand and sand (or sandy loam), sandy loam and sand (or loamy sand and loam), loam and clay loam, clay loam (or silty clay) and silty clay loam, and silty clay loam and silty clay. The MC-LN model was able to accurately quantify the vertical changes of textures in the soil profiles. This study will aid in quantification of water and solute transport in soils with vertical heterogeneity of soil textural layers.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3