Lead electrochemical speciation analysis in seawater media by using AGNES and SSCP techniques

Author:

Díaz-de-Alba Margarita,Galindo-Riaño M. Dolores,Pinheiro José Paulo

Abstract

Environmental context Metal contamination of seawater can present severe environmental problems owing to the high toxicity of metals and their persistence in the environment. This study explores the possibility of analysing lead in seawater media using two recently developed electrochemical methods. The methods are shown to be very useful tools to monitor the behaviour and fate of lead and other metals in seawater. Abstract The speciation of PbII in synthetic and real seawater is studied by absence of gradients and Nernstian equilibrium stripping (AGNES) and stripping chronopotentiometry at scanned deposition potential (SSCP). The usefulness of the combination of both techniques in the same electrochemical cell for trace metal speciation analysis is assessed at different pH values (2.7, 5.0, 6.0, 7.0 and 8.6). The AGNES (free metal ion concentrations) and SSCP (stability constants) results for synthetic seawater agree reasonably with each other and with the theoretical predictions of the software Visual MINTEQ 3.0. This is also true for real seawater media below pH 7.0. Because of the influence of natural organic matter (2.01mgL–1 total organic carbon) in the real seawater at pH 7.0 and 8.6 the SSCP signal showed that the PbII complexes became less labile and were formed by chemically heterogeneous ligands. At these pH values, free metal concentrations determined by AGNES agreed with concentrations predicted by Visual MINTEQ using a generic fulvic acid concentration.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3