Evidence for arsenic-driven redox chemistry in a wetland system: a field voltammetric study

Author:

Haffert L.,Sander S. G.,Hunter K. A.,Craw D.

Abstract

Environmental context.The speciation of the toxic element arsenic directly controls its environmental mobility and toxicity. The current study took place on site in an historic mine processing environment that is extremely arsenic-rich and comparatively sulfur-deficient. When arsenic is one of the major chemical components, redox state and pH of the chemical system are closely linked to arsenic speciation. Abstract.This study investigates the chemistry of the AsIII–AsV redox couple in association with As-rich processing residues (up to 40 wt%) from a historic gold mine in New Zealand. The site provides a unique natural laboratory of a sulfide-free chemical system driven by arsenolite dissolution. Field based cathodic stripping voltammetry, which circumvents post-sampling preservation issues, was successfully applied to analyse the AsIII to the microgram level. The AsIII–AsV redox couple, in particular the oxidation of AsIII, was found to have a noticeable influence on system pH and EH. The As redox pair itself is controlled by a range of processes, which were identified for the varying aqueous environments present on the studied site.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3