Understanding the heat resistance of cucumber through leaf transcriptomics

Author:

Wang MinORCID,He Xiaoming,Peng Qin,Liang Zhaojun,Peng Qingwu,Liu Wenrui,Jiang Biao,Xie Dasen,Chen Lin,Yan Jinqiang,Lin Yu'e

Abstract

Heat stress is a major environmental factor limiting plant productivity and quality in agriculture. Cucumber, one of the most important vegetables among cucurbitaceae, prefers to grow in a warm environment. Until now the molecular knowledge of heat stress in cucumber remained unclear. In this study, we performed transcriptome analysis using two diverse genetic cucumber cultivars, L-9 and A-16 grown under normal and heat stress. L-9 displayed heat-tolerance phenotype with higher superoxide dismutase enzyme (SOD) enzyme activity and lower malondialdehyde (MDA) content than A-16 under heat stress. RNA-sequencing revealed that a total of 963 and 2778 genes are differentially expressed between L-9 and A-16 under normal and heat stress respectively. In addition, we found that differentially expressed genes (DEGs) associated with plant hormones signally pathway, transcription factors, and secondary metabolites showed significantly change in expression level after heat stress, which were confirmed by quantitative real-time PCR assay. Our results not only explored several crucial genes involved in cucumber heat resistance, but also provide a new insight into studying heat stress.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3