Development of DNPH/HPLC method for the measurement of carbonyl compounds in the aqueous phase: applications to laboratory simulation and field measurement

Author:

Wang Hongli,Zhang Xuan,Chen Zhongming

Abstract

Environmental context. Carbonyl compounds, a class of oxygenated organic matter, are crucial participants in atmospheric processes. Recently, studies have shown that the aqueous-phase processes of carbonyls have an important contribution to the formation of secondary organic aerosol (SOA), which is considered to have a significant impact on global climate change and human health. We developed the classical DNPH/HPLC method to characterise the aqueous-phase carbonyls, especially methacrolein, methyl vinyl ketone, glyoxal, and methylglyoxal, which are important precursors of SOA, in order to better understand the pathways of SOA formation in the atmosphere. Abstract. The DNPH/HPLC method for characterising monocarbonyls and dicarbonyls in the aqueous phase has been developed. A series of experiments have been carried out using eight atmospheric ubiquitous carbonyl compounds as model dissolved compounds in both acetonitrile and water solution to obtain the optimal derivatisation and analysis qualifications. Compared with the analysis of carbonyls dissolved in acetonitrile, the influence of acidity on the derivatisation efficiency should be carefully considered in determining carbonyls in water and the optimal acidity is pH 2.0. We find that methyl vinyl ketone (MVK) transforms to crotonaldehyde during the derivatisation reaction. This transformation can be controlled to a minor degree by increasing the mixing ratio of DNPH to MVK up to 100 : 1. This improved method has been satisfactorily applied to laboratory simulations and field measurements for better understanding the carbonyl chemistry in the atmosphere.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3