Organic fluorine content in aqueous film forming foams (AFFFs) and biodegradation of the foam component 6 : 2 fluorotelomermercaptoalkylamido sulfonate (6 : 2 FTSAS)

Author:

Weiner Barbara,Yeung Leo W. Y.,Marchington Erin B.,D'Agostino Lisa A.,Mabury Scott A.

Abstract

Environmental context Total organofluorine and known fluorosurfactants were quantified in 11 aqueous film forming foams (AFFFs) used to extinguish fires in Ontario, Canada, and one commercial AFFF product. By comparing the concentrations of known fluorosurfactants with the total organofluorine, less than 10% of the fluorosurfactants were identified in half of the samples. Our biodegradation experiment with one of the fluorosurfactants using waste-water treatment plant sludge showed that it was a potential source of perfluoroalkyl carboxylates, which are persistent in the environment. Abstract Eleven aqueous film forming foam (AFFF) samples that were used to extinguish fires in Ontario, Canada, and one commercial product, were analysed using a variety of analytical techniques to obtain structural information and quantities of organofluorine and known perfluoroalkyl and polyfluoroalkyl substances (PFASs). The NMR spectra of the foams distinguished the fluorosurfactants that were synthesised by either electrochemical fluorination or telomerisation. Total organofluorine content was quantified using total organofluorine–combustion ion chromatography (TOF-CIC), which revealed that the samples contained from 475 to 18 000µgFmL–1. The common AFFF component 6 : 2 fluorotelomermercaptoalkylamido sulfonate (FTSAS) was quantified by liquid chromatography tandem mass spectrometry (LC-MS/MS) together with perfluoroalkane sulfonates (PFSAs), perfluoroalkyl carboxylates (PFCAs) and fluorotelomer sulfonates (FTSAs); in five samples, 6 : 2 FTSAS was present in concentrations greater than 1000µgmL–1. By comparing the concentrations of these quantifiable fluorochemicals with the total organofluorine content, it was evident that in half of the AFFF samples, less than 10% of the fluorochemicals were identified; in two of the samples, perfluorooctane sulfonate (PFOS) accounted for ~50% of the total organofluorine content. Our degradation experiment with 6 : 2 FTSAS using waste-water treatment plant sludge showed that 6 : 2 FTSAS was a potential source of FTSAs, fluorotelomer alcohols and PFCAs in the environment.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3