Simplified power law relationship in the estimation of hydraulic conductivity of unsaturated sands using electrical conductivity

Author:

Liu Ching-Yi,Hsieh Yun-Da,Chiu Yung-ChiaORCID

Abstract

The unsaturated zone is a complex multiphase system, and modelling and prediction of flow and contaminant transport in this zone remain a challenge. In order to understand the mechanisms of fluid flow in unsaturated sands, an accurate and efficient approach to estimate unsaturated hydraulic conductivity (K) is essential. In this study, a power law relationship was derived from a combination of Archie’s law and van Genuchten’s model to relate bulk (apparent) electrical conductivity (ECa) with unsaturated K. The laboratory sandbox experiments were conducted first to delineate the soil water characteristic curves (SWCCs). Time domain reflectometry was used to simultaneously measure volumetric water content (θ) and ECa. Then, the experimental relationships of the effective saturation (S) and ECa and simulated S–K were combined to establish the relationship between ECa and unsaturated K. The developed power law relationships described the relative EC (ECr) and relative K (Kr) very well by just using one parameter, exponent β. When fluid EC was low, the β values for the drainage and wetting processes ranged within 2.09–2.74 and 2.50–3.79 respectively. The variations of β values of homogeneous material were smaller that of heterogeneous material and the effect of hysteresis on the ECr–Kr relationship was observed. When pore space was filled with the high-EC solution, it easily mimicked the S–Kr relationship and resulted in a smaller β value. The β value acted as a lumped factor accounting for pore tortuosity, pore connectivity, shape of pore space, and fluid EC. The power law relationship of ECr–Kr developed in this study could lead to a direct estimation of the spatial and temporal variations of unsaturated K, once the measurements of SWCC are available from estimation of saturated K and combination of time-lapse ECa measurements. Accurate and efficient estimation of unsaturated K could improve the prediction of flow in the unsaturated zone and allow a comprehensive understanding of unsaturated zone processes.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3