Author:
Zhang Hong,Smith Sean C.,Nanbu Shinkoh,Nakamura Hiroki
Abstract
In this work, we study fluorination effects on atomic hydrogen interactions with the fluorinated corannulene radical (C15H10F5), which was built as a model for a partially fluorinated nanotube (or fullerene). Complete active space self-consistent field and multi-reference configuration interaction methods are employed to calculate the potential energy surfaces for both ground and excited electronic states, and the R-matrix quantum dynamics method is used to investigate the atomic hydrogen transmission and reflection dynamics through the five-membered ring in the fluorinated corannulene radical, which includes resonance effects as well as non-adiabatic transitions between the ground and excited electronic states. We also investigate hydrogen adsorptions at two sites in the middle five-membered ring, namely, on top of a carbon atom and in the middle of a carbon–carbon bond. We found that on carbon-top site, the adsorption is almost barrierless, whereas in the middle bond site, there is a barrier to hydrogen adsorption.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献