Author:
Krause G. Heinrich,Winter Klaus,Krause Barbara,Jahns Peter,García Milton,Aranda Jorge,Virgo Aurelio
Abstract
In view of anthropogenic global warming, heat tolerance of a neotropical pioneer tree, Ficus insipida Willd., was determined. Sections of sun leaves from a mature tree and from seedlings cultivated at ambient and elevated temperatures were heated to 42–53°C. Leaves from a late-successional tree species, Virola sebifera Aubl., were also studied. Widely used chlorophyll a fluorescence methods based on heat-induced rise of initial fluorescence emission, Fo, and decrease in the ratio of variable to maximum fluorescence, Fv/Fm, were reassessed. Fv/Fm determined 24 h after heat treatment was the fluorescence parameter most suitable to assess the lethal temperature causing permanent tissue damage. Thermo-tolerance was underestimated when Fo and Fv/Fm were recorded immediately after the heat treatment. The limit of thermo-tolerance was between 50 and 53°C, only a few °C above peak leaf temperatures measured in situ. The absence of seasonal changes in thermo-tolerance and only marginal increases in thermo-tolerance of plants grown under elevated temperatures suggest little capacity for further heat acclimation. Heat-stress experiments with intact potted seedlings also revealed irreversible leaf damage at 51–53°C, but plants survived and developed new leaves during post-culture.
Subject
Plant Science,Agronomy and Crop Science
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献