Relative functional and optical absorption cross-sections of PSII and other photosynthetic parameters monitored in situ, at a distance with a time resolution of a few seconds, using a prototype light induced fluorescence transient (LIFT) device

Author:

Osmond Barry,Chow Wah Soon,Wyber Rhys,Zavafer Alonso,Keller Beat,Pogson Barry J.,Robinson Sharon A.

Abstract

The prototype light-induced fluorescence transient (LIFT) instrument provides continuous, minimally intrusive, high time resolution (~2 s) assessment of photosynthetic performance in terrestrial plants from up to 2 m. It induces a chlorophyll fluorescence transient by a series of short flashes in a saturation sequence (180 ~1μs flashlets in <380 μs) to achieve near-full reduction of the primary acceptor QA, followed by a relaxation sequence (RQA; 90 flashlets at exponentially increasing intervals over ~30 ms) to observe kinetics of QA re-oxidation. When fitted by the fast repetition rate (FRR) model (Kolber et al. 1998) the QA flash of LIFT/FRR gives smaller values for FmQA from dark adapted leaves than FmPAM from pulse amplitude modulated (PAM) assays. The ratio FmQA/FmPAM resembles the ratio of fluorescence yield at the J/P phases of the classical O-J-I-P transient and we conclude that the difference simply is due to the levels of PQ pool reduction induced by the two techniques. In a strong PAM-analogous WL pulse in the dark monitored by the QA flash of LIFT/FRR φPSIIWL ≈ φPSIIPAM. The QA flash also tracks PQ pool reduction as well as the associated responses of ETR QA → PQ and PQ → PSI, the relative functional (σPSII) and optical absorption (aPSII) cross-sections of PSII in situ with a time resolution of ~2 s as they relax after the pulse. It is impractical to deliver strong WL pulses at a distance in the field but a longer PQ flash from LIFT/FRR also achieves full reduction of PQ pool and delivers φPSIIPQ ≈ φPSIIPAM to obtain PAM-equivalent estimates of ETR and NPQ at a distance. In situ values of σPSII and aPSII from the QA flash with smaller antenna barley (chlorina-f2) and Arabidopsis mutants (asLhcb2–12, ch1–3 Lhcb5) are proportionally similar to those previously reported from in vitro assays. These direct measurements are further validated by changes in antenna size in response to growth irradiance. We illustrate how the QA flash facilitates our understanding of photosynthetic regulation during sun flecks in natural environments at a distance, with a time resolution of a few seconds.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3