242 DETECTION OF MICROTUBULES BY POLARIZED LIGHT MICROSCOPY IN BOVINE OOCYTES

Author:

Caamaño J. N.,Díez C.,Muñoz M.,Martin D.,Morató R.,Mogas T.,Carrocera S.,Gómez E.

Abstract

Polarized light microscopy (PLM) is being used as a tool in assisted reproductive technologies in humans and, more recently, in farm animals. Polarized light microscopy may allow for a quick localization or removal of nuclear structures, or both in the oocyte without fluorochrome staining and ultraviolet exposure, and may reduce nuclear damage when performing intra-cytoplasmic sperm injection. The aim of this study was to assess the efficiency of PLM to detect microtubule-polymerized protein within in vitro-matured bovine oocytes. Cumulus–oocyte complexes from slaughterhouse ovaries were matured in vitro for 23 h in bicarbonate-buffered TCM-199, FSHp (1 μg mL–1), LH (5 μg mL–1), 17β-estradiol (1 μg mL–1), and 10% fetal calf serum at 38.7°C in 5% CO2 in air with high humidity. After in vitro maturation, oocytes (n = 98) were denuded with 0.5% hyaluronidase and were placed individually in 10-μL drops of TCM-199-HEPES-BSA in a glass Petri dish. Polarized light microscopy was used to detect the presence of polymerized protein that could be forming a meiotic spindle. To confirm the presence of the polymerized protein and the meiotic spindle, each individual oocyte was subjected to immunostaining and chromatin detection as described by Morató et al. 2008 Mol. Reprod. Dev. 75, 191–201. The experiment was replicated 6 times. There was an absolute positive correlation (r = 1; P < 0.0001) between the signal obtained by PLM and the presence of microtubule-polymerized protein as confirmed by immunostaining. A barrel-shaped spindle was observed in 40% of the individual samples, whereas disorganized microtubule structures were obtained in 55% of the samples. The biological implication of these findings needs to be explored. However, PLM seems to be an efficient system to detect polymerized protein in in vitro-matured bovine oocytes.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polarized Light Microscopy in Mammalian Oocytes;Reproduction in Domestic Animals;2010-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3