Dialkylsulfate formation in sulfuric acid-seeded secondary organic aerosol produced using an outdoor chamber under natural sunlight

Author:

Li Jiaying,Jang Myoseon,Beardsley Ross L.

Abstract

Environmental context Laboratory and field studies have both provided evidence for organosulfate formation by esterification of H2SO4 with organic compounds in aerosols. Using an outdoor chamber, the production of dialkylsufate was measured for organic aerosols produced by photooxidation of various hydrocarbons in the presence of H2SO4 aerosol and NOx. The formation of organosulfates influences the decrease of both aerosol acidity and aerosol hygroscopicity. Abstract Secondary organic aerosols (SOA) were produced by the photooxidation of the volatile organic hydrocarbons (VOCs) isoprene, α-pinene and toluene, in the presence of excess amounts of sulfuric acid seed aerosol with varying NOx concentrations using a large, outdoor smog chamber. Aerosol acidity ([H+], μmol m–3) was measured using colorimetry integrated with a reflectance UV-visible spectrometer (C-RUV). The C-RUV technique measures aerosol acidity changes through the neutralisation of sulfuric acid with ammonia and the formation of dialkylsulfate, a diester of sulfuric acid. The concentration (μmol m–3) of dialkylsulfate in aerosol was estimated using the difference in [H+] obtained from C-RUV and particle-into-liquid-sampler ion chromatography (PILS-IC). The yield of dialkylsulfate (YdiOS) was defined as the dialkylsulfate concentration normalised by the concentrations of both the ammonium-free sulfate ([SO42–]free=[SO42–] – 0.5 [NH4+]) and organic carbon. The highest YdiOS appeared in isoprene SOA and the lowest YdiOS in α-pinene SOA. Under our experimental conditions, more than 50% of the total sulfates in sulfuric acid-seeded isoprene SOA were dialkylsulfates. For all SOA, higher YdiOS was observed under higher NOx conditions (VOC (ppb C)/NO (ppb)<15). Among the major functional groups (–COOH, –CO–H, –CHO and –ONO2) predicted to be present using a simple absorptive partitioning model of organic products in the multiphase system (gas, organic aerosol and inorganic aerosol), the concentrations of –CO–H, –CHO and –ONO2 groups were found to be correlated with YdiOS. In particular, a strong correlation was observed between YdiOS and the concentration of alcohol functional groups.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3