FeII oxidation by molecular O2 during HCl extraction

Author:

Porsch Katharina,Kappler Andreas

Abstract

Environmental contextIn the environment, iron exists mainly as FeII and FeIII and plays an important role in biogeochemical processes. The FeII and FeIII content is often quantified by hydrochloric acid extraction and the acid is thought to prevent FeII oxidation by oxygen. However, we found that with increasing HCl concentration and temperature, oxidation of FeII by oxygen is accelerated. Therefore, in order to obtain reliable results extractions should be performed with dilute HCl or in the absence of oxygen. AbstractHCl is commonly used to stabilise FeII under oxic conditions and is often included in Fe extractions. Although FeII oxidation by molecular O2 in HCl is described in the field of hydrometallurgy, this phenomenon has not been systematically studied in environmentally relevant systems. The extent of FeII oxidation by O2 during extraction of soils and magnetite by HCl and in HCl/FeCl2 solutions was therefore quantified. FeII was stable in 1 M HCl at room temperature for several days, whereas in 6 M HCl at 70°C, 90% of the FeII was oxidised within 24 h. In the absence of O2, no FeII oxidation occurred. Experiments at low pH with increasing H+ or Cl– concentration alone and geochemical modelling suggested that the formation of complexes of FeII and HCl may be responsible for the observed FeII oxidation. The use of strictly anoxic conditions for Fe extraction by HCl to obtain reliable Fe redox speciation data is therefore recommended.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3