Methane emissions from sheep fed Eragrostis curvula hay substituted with Lespedeza cuneata

Author:

du Toit C. J. L.ORCID,van Niekerk W. A.,Meissner H. H.,Erasmus L. J.,Coertze R. J.

Abstract

Context Reducing emissions of greenhouse gases from livestock production systems is a global research priority. Forages that contain condensed tannins, such as the perennial legume Lespedeza cuneata, may help to reduce ruminant methane (CH4) emissions. Aims The objective of this study was to investigate the effect of feeding different levels of L. cuneata hay on feed intake and enteric CH4 emissions of sheep fed a basal diet of subtropical Eragrostis curvula hay. Methods Four adult ruminally cannulated Dohne Merino wethers with initial bodyweight of 65.5 ± 3.5 kg were used in the experiment in a 4 × 4 Latin square design. The four experimental treatments were E. curvula hay substituted with 0%, 30%, 60% and 90% L. cuneata hay. Each of four experimental periods lasted 27 days, which consisted of a 14-day adaptation period, a 7-day digestibility trial, and a 6-day CH4-measurement period. During the 6-day CH4-measurement period, CH4 emissions were measured continuously over a 24-h period by using an open circuit respiration system. Key results Dry matter intake (DMI, g/kg W0.75) was higher (P < 0.05) for sheep receiving 60% and 90% L. cuneata than 0% and 30% L. cuneata (77.33 and 84.67 g/kg W0.75 vs 62.96 and 62.71 g/kg W0.75). The increase in DMI corresponded with a linear increase in DM digestibility of the experimental treatments from 38% to 45% as the level of L. cuneata substitution increased. Methane yield was not influenced (P > 0.05) by 30% inclusion of L. cuneata (17.6 g CH4/kg DMI) but decreased (P < 0.05) as the inclusion level increased to 60% and 90% (13.8 and 14.3 g CH4/kg DMI). Conclusions Inclusion of L. cuneata hay in a diet based on E. curvula hay improved diet digestibility, and led to increased concentrations of crude protein, neutral detergent fibre and non-fibre carbohydrates. Substituting E. curvula hay with 60% L. cuneata on a DM basis resulted in the greatest reduction in CH4 yield of 21.4% compared with a diet of 100% E. curvula. Implications The results suggest that L. cuneata has the potential to reduce CH4 yield and possibly increase production from sheep by improving diet DM digestibility and through improved DMI.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3