Warming and nitrogen deposition accelerate soil phosphorus cycling in a temperate meadow ecosystem

Author:

Gong ShiweiORCID,Zhang Tao,Guo Jixun

Abstract

Phosphorus (P) is an essential element for living organisms and a major limiting factor in many ecosystems. In recent years, global warming and nitrogen (N) deposition have become increasingly serious, with significant effects on the P cycle in terrestrial ecosystems. A series of studies were carried out on the soil P cycle, but how climate change affects this remains unclear. Field experiments with warming and N addition were implemented since April 2007. Infrared radiators manipulated temperature, and aqueous ammonium nitrate (10 g m–2 year–1) was added to simulate N deposition. Compared with the control, N addition reduced soil total P; warming and N addition decreased soil available P; warming, N addition and warming plus N addition decreased microbial biomass P, but increased litter P; and warming and N addition increased phosphatase activity significantly. Correlation analysis showed that soil total P, available P, microbial biomass P and phosphatase activity were positively correlated with soil temperature and water content. Soil total P was positively correlated with microbial biomass P and phosphatase activity; and available P was positively correlated with microbial biomass P but negatively correlated with litter P. The results showed that warming and N deposition accelerated the soil P cycle by changing soil physical and chemical properties and soil biological activities (microbial and phosphatase activities). However, N addition reduced the capacity of microbes to fix P and reduced microbial biomass P, resulting in losses to the soil P pool, further aggravating P limitation in the Songnen Grassland ecosystem.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3