Phosphate Removal from Aqueous Solutions using Neutralised Bauxite Refinery Residues (Bauxsol™)

Author:

Akhurst Darren J.,Jones Graham B.,Clark Malcolm,McConchie David

Abstract

Environmental Context.Eutrophication of freshwater and marine ecosystems is a global problem, which is frequently linked to high phosphorus concentrations. The present study investigated the use of Bauxsol™, a modified bauxite refinery residue, to remove dissolved phosphate from water, and has shown that it can be used as a cost-effective adsorbent for treating phosphate-contaminated waters. The results provide water and environmental managers with a new technique for decreasing the phosphate loads in water and wastewater. Environmental benefits include improved water quality, minimisation of excessive plant growth, including potentially toxic blue green algae, and the utilisation of an industrial residue for environmental remediation. Abstract.Phosphate (PO43–) removal by Bauxsol™, a neutralised bauxite refinery residue, was investigated as a function of time, pH, ionic strength, adsorbent dosage, competing ions, and initial phosphate concentration. The results of adsorption and desorption studies indicate that adsorption of PO43– by Bauxsol™ is based on a ligand-exchange mechanism, although the low reversibility pH-independent desorption observed in acid-treated Bauxsol™ indicates a dominance of chemisorption. It was shown that PO43– adsorption onto both Bauxsol™ and acid-treated Bauxsol™ followed a Langmuir isotherm model, with adsorption capacities of 0.21 and 0.48 mmol g−1 at pH 9.0 and 5.2 respectively. Adsorption of PO43– by Bauxsol™ increased with decreasing pH, with maximum adsorption efficiencies obtained at pH 5.2 ± 0.1 (the lowest pH investigated), higher Bauxsol™ to initial phosphate concentration ratios, and increased time. Studies of the effects of competing ions on the adsorption of PO43– by Bauxsol™ indicated that adsorption decreased in the presence of HCO3− ions, whereas SO42–and Cl− ions had little effect, and Ca2+ and Mg2+ ions increased adsorption. These findings suggest that Bauxsol™ could be used as an efficient low-cost adsorbent for treating phosphate-contaminated waters.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3