Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 enhances salt and drought tolerance in transgenic Lotus corniculatus by increasing cations accumulation

Author:

Bao Ai-Ke,Wang Yan-Wen,Xi Jie-Jun,Liu Chen,Zhang Jin-Lin,Wang Suo-Min

Abstract

Lotus corniculatus L. is an important legume for forage, but is sensitive to salinity and drought. To develop salt- and drought-resistant L. corniculatus, ZxNHX and ZxVP1-1 genes encoding tonoplast Na+/H+ antiporter and H+-pyrophosphatase (H+-PPase) from a succulent xerophyte Zygophyllum xanthoxylum L., which is well adapted to arid environments through accumulating Na+ in its leaves, were transferred into this forage. We obtained the transgenic lines co-expressing ZxNHX and ZxVP1-1 genes (VX) as well as expressing ZxVP1-1 gene alone (VP). Compared with wild-type, both VX and VP transgenic lines grew better at 200 mM NaCl, and also exhibited higher tolerance and faster recovery from water-deficit stress: these performances were associated with more Na+, K+ and Ca2+ accumulation in their leaves and roots, which caused lower leaf solute potential and thus retained more water. Moreover, the transgenic lines maintained lower relative membrane permeability and higher net photosynthesis rate under salt or water-deficit stress. These results indicate that expression of tonoplast Na+/H+ antiporter and H+-PPase genes from xerophyte enhanced salt and drought tolerance of L. corniculatus. Furthermore, compared with VP, VX showed higher shoot biomass, more cations accumulation, higher water retention, lesser cell membrane damage and higher photosynthesis capacity under salt or water-deficit condition, suggesting that co-expression of ZxVP1-1 and ZxNHX confers even greater performance to transgenic L. corniculatus than expression of the single ZxVP1-1.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3