Testing a Mechanistic Model of Forest-Canopy Mass and Energy Exchange Using Eddy Correlation: Carbon Dioxide and Ozone Uptake by a Mixed Oak-Maple Stand

Author:

Amthor JS,Goulden ML,Munger JW,Wofsy SC

Abstract

A big-leaf model of C3-canopy mass and energy exchange was used to predict hourly CO2 and O3 uptake by a mixed deciduous Quercus-Acer (oak-maple) stand in central Massachusetts, USA. The model is based on canopy-radiation interactions, leaf mesophyll metabolism (photosynthetic electron transport, carboxylation and oxygenation of ribulose 1,5-bisphosphate [RuP2] by RuP2 carboxylase/oxygenase [Rubisco], and respiration), physical transport conductances of mass and heat above and within the canopy, conductances of mass at the leaf surface and in the mesophyll, and mass and energy exchange at the soil surface (forest floor). Predictions of hourly CO2 and O3 uptake were compared to independent whole-forest CO2 and O3 exchange measurements made by the eddy correlation method during a 68 day period in the summer and early autumn of 1992. Predicted hourly CO2 exchange rate was strongly correlated (r ≈ +0.91) with measured hourly CO2 exchange, but mean day-time predicted whole-forest CO2 uptake was c. 13% (c. 1.13 μmol CO2 m-2 s-1) greater than CO2 uptake measured by eddy correlation. The model tended to overpredict CO2 uptake during late afternoon, but was accurate during the rest of the day. Predicted and measured O3 uptake rates also were positively correlated (r ≈ +0.76). The diurnal patterns of predicted and measured O3 uptake indicated that stomata1 conductance (gs) was accurately predicted during the morning, but in the afternoon the model overpredicted gs. This pattern was consistent with the overprediction of afternoon CO2 uptake, and suggested that a feedback inhibition of photosynthesis occurred in the afternoon. This might have been related to source-sink imbalance following several hours of photosynthesis. On the whole, and in spite of the simplifications inherent in the big-leaf representation of the canopy, the model is useful for predicting forest-environment interactions and for interpreting mass and energy exchange measurements.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3