Effects of carrot growing on volcanic ash soils in the Ohakune area, New Zealand

Author:

Basher L. R.,Ross C. W.,Dando J.

Abstract

Effects of intensive carrot production on soils derived from young volcanic ash were determined at Ohakune, New Zealand. Erosion rates (derived from caesium-137) and key soil physical and chemical properties were determined in 3 fields with differing management history (6 and 16 years cropping) or topography (sloping and flat).Caesium-137 areal activity in cropped fields ranged from 90 to 2034 Bq/m2, compared with a reference value under long-term pasture of 602 Bq/m2. Mean areal activity was lower than the reference value in 2 sloping fields, but not in a flat field. Net erosion rates were low in both sloping fields (–16 and –5 t/ha.year), but within each field there was a wide range of erosion and deposition rates (–109 to +293 t/ha.year in Field 1 and –145 to +514 t/ha.year in Field 2). These very high rates imply total soil losses up to 238 mm and deposition up to 670 mm, consistent with observed elevation differences between the cropped fields and adjacent fields in long-term pasture and with topsoil depth variation from 145 to 1165 mm. Tillage erosion and deposition rates are high (up to c. 40 t/ha.year) but water erosion is the dominant mechanism of soil redistribution.Cropping has reduced organic matter and aggregate stability, increased bulk density in the lower part of the topsoil and subsoil, and increased aggregate size. Hydraulic conductivity was higher in the topsoil and lower in the subsoil under cropping than it was under pasture. However, it would not limit soil water movement as it was higher than typical rainfall intensities. Compacted wheel tracks were the primary control on runoff and erosion as they have low infiltration rates (4 mm/h) compared with carrot beds (853 mm/h).

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3