Salinity Tolerance in the Mangroves Aegiceras corniculatum and Avicennia marina. I. Water Use in Relation to Growth, Carbon Partitioning, and Salt Balance

Author:

Ball MC

Abstract

The water use characteristics of two mangrove species, Aegiceras corniculatum and Avicennia marina, in salinities of 50, 250 and 500 mol m-3 NaCI and leaf-to-air vapour pressure differences of 6, 12 and 24 mbar were studied in relation to growth, carbon partitioning and salt balance. The net water use efficiency in A. corniculatum declined with increasing salinity and decreasing humidity. In contrast, water use was more conservative in A. marina, which maintained the net water use efficiency almost constant with variation in salinity. Aegiceras corniculatum maintained higher rates of water uptake and higher leaf area/plant mass ratios than A. marina. Growth of both species declined with increasing salinity, with A. corniculatum being the more sensitive species. Differences in growth rates between species and between treatments were consistent with differences in the assimilation rate and leaf areal plant mass ratio. Salt exclusion by both species increased from 90 to 97% with increase in salinity from 50 to 500 mol m-3 NaCl. The xylem Cl- concentrations increased with increase in salinity, but decreased with increase in shoot evaporation rates such that the salt flux to the leaves did not increase with increase in evaporation rates at a given salinity. Despite similarities in the salt fluxes to leaves, the transport of Cl- to the shoot per unit of shoot growth increased more with increasing salinity in A. corniculatum than in A. marina because the net water use efficiencies were lower in the former species. Thus, the amount of salt secreted per mole water transpired (and hence also per mole carbon gained) increased more with increasing salinity in A. corniculatum than in A. marina. These differences in salt balance may be associated with the greater sensitivity of A. corniculaturn to increasing salinity. The possible ecological significance of these findings is discussed.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3