Disturbance-dependent invasion of the woody weed, Calotropis procera, in Australian rangelands

Author:

Menge Enock O.,Bellairs Sean M.,Lawes Michael J.

Abstract

Plant invasions are threats to biodiversity and ecosystem processes that have far reaching ecological and economic impacts. Understanding the mechanisms of invasion essentially helps in developing effective management strategies. Rubber bush (Calotropis procera) is an introduced milkweed that invades Australian beef production rangelands. Its establishment is often associated with disturbances caused by pastoral management practices. We examined whether or not rubber bush (1) outcompetes native grasses, (2) can invade intact rangeland, and (3) if disturbance facilitates rubber bush establishment and spread in grassy rangelands. We measured the competitive response of different densities of Mitchell grass (Astrebla pectinata) individuals and the competitive effects of associate rubber bush seedlings in an additive common garden experiment. Replicated field exclosure experiments, under grass-dominated and tropical savanna woodland conditions examined the effect of increasing levels of disturbance on rubber bush seedling emergence. The dominant native Mitchell grass was a stronger competitor than rubber bush when grown together under greenhouse conditions, whereby root and shoot biomass yields were more restricted in rubber bush compared with Mitchell grass. This finding was corroborated in the field exclosure experiments at both sites, where seedling emergence increased 5-fold in seeded and highly disturbed plots where superficial soils were turned over by treatments simulating heavy grazing and trampling by cattle or machinery. Emergence of rubber bush seedlings in seeded plots that were undisturbed, clipped and grazed was minimal and rubber bush seedlings did not survive the seedling stage in these plots. These results demonstrate that disturbance to the superficial soil stratum affects the ability of rubber bush seeds to successfully establish in a microsite, and high levels of soil disturbance substantially increase establishment. Thus, rubber bush is a poor competitor of Mitchell grass and does not invade intact grassland. Consequently, rubber bush invasion is disturbance-dependent in the vast Australian rangelands. The spread of this weed may be arrested by management practices that minimise disturbances to grass cover.

Publisher

CSIRO Publishing

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3