Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA

Author:

Reich Robin M.,Lundquist John E.,Bravo Vanessa A.

Abstract

Fire suppression has increased fuel loadings and fuel continuity in many forested ecosystems, resulting in forest structures that are vulnerable to catastrophic fire. This paper describes the statistical properties of models developed to describe the spatial variability in forest fuels on the Black Hills National Forest, South Dakota. Forest fuel loadings (tonnes/ha) are modeled to a 30 m resolution using a combination of trend surface models to describe the coarse-scale variability in forest fuel, and binary regression trees to describe the fine-scale variability associated with site-specific variability in forest fuels. Independent variables used in the models included various Landsat TM bands, forest class, elevation, slope, and aspect. The models accounted for 55% to 72% of the variability in forest fuels. In spite of having highly skewed distributions, cross-validation showed the models to have nominal prediction bias. This paper also evaluates the feasibility of using the estimation error variance to explain estimation uncertainty. The models are allowing us to study the influence of small-scale disturbances on forest fuel loadings and diversity of resident and migratory birds on the Black Hills National Forest.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3