Oxygen-sensitive Differences in the Relationship between Photosynthetic Electron Transport and CO2 Assimilation in C3 and C4 Plants during State Transitions

Author:

Andrews James R.,Baker Neil R.

Abstract

Wheat (C3) and maize (C4) leaves were exposed to light treatments that were limiting for CO2 assimilation and which excite preferentially photosystem I (PSI) or photosystem II (PSII) and induce State 1 or State 2, respectively. In order to examine the relationships between linear electron transport and CO2 in leaves during State transitions, simultaneous measurements of CO2 assimilation, chlorophyll fluorescence and absorbance at 820 nm were used to estimate the quantum efficiencies of CO2 assimilation and PSII and PSI photochemistry. In wheat leaves with photorespiratory activity, no significant change in quantum efficiency of CO2assimilation was observed during State transitions. This was not the case when photorespiration was inhibited with either 2% O2 or 1000 ppm CO2 and transition from State 2 to State 1 was accompanied by a large decrease (c. 20%) in the quantum efficiency of CO2 assimilation which was not associated with a decrease in the quantum efficiency of electron transport through PSII. Photorespiration appears to buffer the quantum efficiency of CO2 assimilation from changes associated with decreases in the rate of CO2 fixation resulting from imbalances in PPFD absorption by PSI and PSII. When maize leaves were subjected to similar State transitions, no significant change in the quantum efficiency of CO2 assimilation was observed on transition from State 2 to State 1, but on switching back to State 2 a very large decrease (c. 40%) was observed. This decrease could be prevented if leaves were maintained in either 2% O2 or 593 ppm CO2. The possible occurrence of photorespiration in maize leaves on transition from State 1 to State 2, which could result from an inhibition of the CO2 concentrating mechanism, cannot account for the decrease in the quantum efficiency of CO2 assimilation since the relationship between PSII electron transport and CO2 assimilation remained similar throughout the State transitions. Also changes in the phosphorylation status of the light-harvesting chlorophyll a/b protein associated with PSII cannot be implicated in this phenomenon.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3