Founders' Lecture. Human spermatozoa: fruits of creation, seeds of doubt

Author:

Aitken R. John

Abstract

Deoxyribonucleic acid damage in the male germline is associated with defective fertilisation, impaired embryonic development, reduced implantation, abortion and childhood disease. Oxidative stress and the retention of excess residual cytoplasm by the spermatozoa are frequently associated with the induction of such damage. The redox cycling of xenobiotics by oxido-reductases in the germline, the patient’s age, the incidence of genital tract infections and Sertoli cell dysfunction are all possible contributors to DNA damage in germ cells. Collateral peroxidation of unsaturated fatty acids in the sperm plasma membrane generally ensures that spermatozoa experiencing severe oxidative DNA damage cannot participate in the process of fertilisation. The adaptive termination of pregnancy through the selective vulnerability of genes involved in placentation may also help prevent the vertical transmission of damaged DNA. However, the ultimate safeguard against this form of damage will be to understand the biochemical basis of oxidative stress in human spermatozoa, so that the underlying causative mechanisms can be addressed in a logical manner.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3