Optimising conservation translocations of threatened

Author:

Reiter NoushkaORCID,Menz Myles H. M.ORCID

Abstract

Context Conservation translocations are increasingly being used in the management of rare plants, yet have low success in maintaining populations through recruitment. Aims We investigated whether the survival of translocated plants, recruitment and, therefore, cost effectiveness, can be improved by selecting optimal microsites for both adults and seedlings. Methods Caladenia colorata plants propagated symbiotically with Serendipita australiana (n = 735) were introduced to four sites where the pollinator was present and vegetation matched wild populations. Plant demography was monitored over 6 years. The relationship between microsite variables and measures of orchid survival, re-emergence, flowering and recruitment were analysed with generalised linear mixed-effects models. We then estimated potential improvement in emergence and recruitment, if microsite selection was optimised. Key results A total of 77% of plants survived translocation, and populations grew by 84% through recruitment (n = 615). Survival was positively associated with cover of leaf litter, graminoids and cryptogams. Recruitment was positively correlated with soil moisture. The majority of recruitment was within 5 cm of adult C. colorata plants. The potential improvement by selecting favourable microsites increased adult survival by up to 8% and recruitment by 10–40%. Conclusions Incorporating both the germination niche and adult plant niche within plant translocations more broadly could significantly improve long-term population persistence and the utilisation of conservation funding. Implications Our results are directly applicable to 58 endangered Caladenia species in the subgenus Calonema, owing to their shared mycorrhizal association with S. australiana. Furthermore, our results are applicable to all plant translocations as understanding germination niche and microhabitat requirements is likely to improve success overall.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

Reference95 articles.

1. Albrecht MA, Maschinski J (2012) Influence of founder population size, propagule stages, and life history on the survival of reintroduced plant populations. In ‘Plant reintroduction in a changing climate’. (Eds J Maschinski, KE Haskins) pp. 171–188. (Island Press: Washington, DC, USA)

2. Australian Government (2021) EPBC Act of threatened flora. [Verified 12 March 2021]

3. Backhouse GN, Bates RJ, Brown AP, Copeland LM (2019) ‘A checklist of the orchids of Australia including its island territories.’ (Gary Backhouse: Melbourne, Vic., Australia)

4. Fitting linear mixed-effects models using lme4.;Journal of Statistical Software,2015

5. Constraints to symbiotic germination of terrestrial orchid seed in a Mediterranean bushland.;New Phytologist,2001

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3