The Sunspot Cycle and Solar Magnetic Fields. I. The Mechanism as Inferred from Observation

Author:

G Giovanelli Ronald

Abstract

Observations of solar magnetic and velocity fields can be used to derive the course of events involved in the solar cycle. These differ in three important respects from those of conventional dynamo theories: (i) Polar field reversal. Following the outbreak of a new cycle, magnetic flux released by sunspots diffuses initially by Leighton's random-walk process, but this is soon dominated by the observed poleward flow of about 20 m s - 1 which carries flux to polar regions in about 12 months. Since follower spots lie about 2� higher in latitude than leaders, follower flux arrives in polar regions some two weeks ahead of leader flux, providing a net inflow of follower polarity there until sunspot maximum, reversing the polar field from the previous sunspot cycle and building it up to a maximum. After sunspot maximum, the flux arriving in polar regions is predominantly of follower polarity until or unless spots occur at latitudes so low that flux can diffuse towards and across the equator, predominantly from the lower latitude leader; the effect is doubled by a complementary migration from the opposite hemisphere. This prevents the change in polar flux over the cycle from dropping to zero, and leaves the polarity there reversed at the end of the cycle. (ii) The sunspot cycle. A slow, deeper counterflow, essential for continuity, carries flux strands down in the polar zones and then equatorwards. The concentration of strands is increased continually by differential rotation, and they are dragged continually into contact. Reconnection occurs rapidly except between tubes that are inclined at very small angles. This results in the formation of ropes of flux strands twisted very gently. At some stage they are large enough to float, forming sunspots. The mean sunspot latitude decreases continuously as the flux is carried equatorwards, dying out as the flux ropes become exhausted. The whole process repeats, once again reversing the polar and spot group magnetic fields. Hale's polarity laws follow immediately, and Sporer's law requires only minor adjustments to the predicted velocity of the deep equatorward counterflow. The estimated velocity of this flow is compatible with the observed sunspot and magnetic cycles of 11 and 22 years. (iii) The torsional oscillation. Shear by differential rotation increases the concentration of flux strands; the reaction to strongly sheared flux strands is a tendency to reduce differential rotation. This results in cyclic variations of differential rotation, the phase with respect to sunspot formation being in good agreement with the torsional oscillation observations of Howard and LaBonte (1981) at all latitudes up to 50-55�.

Publisher

CSIRO Publishing

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3