Soil organic carbon stocks in saline and sodic landscapes

Author:

Wong Vanessa N. L.,Murphy Brian W.,Koen Terry B.,Greene Richard S. B.,Dalal Ram C.

Abstract

Increasing salinity (high levels of water-soluble salts) and sodicity (high levels of exchangeable sodium) are serious land degradation issues worldwide. In Australia, salinity and sodicity affect a large proportion of the landscape and often coincide with agricultural land. Despite the areal extent of salt-affected soils, both worldwide and in Australia, few data exist on soil organic carbon (SOC) stocks in these areas. For this study, the level of SOC was determined in scalded (bare areas without vegetation), scalded-eroded, vegetated, and revegetated (i.e. sown pasture) soil profiles from 2 sites in the Southern Tablelands region of New South Wales, Australia. SOC concentration was significantly higher in the profiles that were vegetated with native pasture (1.96–2.71% in the 0–0.05 m layer) or revegetated with sown pasture (2.35% in the 0–0.05 m layer), and lower in those profiles that were scalded (1.52% in the 0–0.05 m layer) or scalded-eroded (0.16–0.30% in the 0–0.05 m layer). These lower SOC levels are reflected throughout the profiles of the scalded and scalded-eroded soils. The soil carbon stocks to 0.30 m are also much lower in the scalded and scalded-eroded soils that have been affected by salinity and sodicity. The profiles that were vegetated with native pasture had carbon stocks to 0.30 m of 35.2–53.5 t/ha, while the sown pasture had 42.1 t/ha. This compares with the scalded profiles with 19.8 t/ha and the scalded-eroded profiles with 7.7–11.4 t/ha to 0.30 m. The presence of vegetation ameliorates several soil properties and results in the differences in SOC and other soil properties between scalded and vegetated profiles at the surface and at depth.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3