Experimental assimilation of synthetic bogus tropical cyclone pressure observations into a high-resolution rapid-update NWP model

Author:

Rennie Susan,Fraser Jim

Abstract

The effect of synthetic ‘bogus’ tropical cyclone (TC) central pressure observations on TC Owen was tested in a convective-scale numerical weather prediction (NWP) system with hourly 4D-Var assimilation. TC Owen traversed the Gulf of Carpentaria over 10–14 December 2018, entering from the east and briefly making landfall on the western edge before reversing course and retracing its path east to cross the northern tip of Queensland. The Australian Bureau of Meteorology runs a high-resolution NWP model centred over Darwin, which covers much of the Gulf of Carpentaria. The next-generation developmental version of this model includes data assimilation. Therefore, when TC Owen presented the opportunity to investigate the simulation of a TC within the domain, the developmental system was run as a case study. The modelled cyclone initially failed to intensify. The case study was then repeated including assimilation of bogus central pressure observations. This new run showed a large improvement in the intensity throughout the simulation; however, the TC track was not substantially improved. This demonstration of the potential impact of using synthetic observations may guide whether the development of a bogus observation source with sufficiently low latency for use in an hourly-cycling system should be prioritised.

Publisher

CSIRO Publishing

Subject

Atmospheric Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3