Author:
Cummings Charles Y.,Attard Gary A.,Mitchels John M.,Marken Frank
Abstract
Hydrous chromium oxide nanoparticles (~15 nm diameter) are assembled from a colloidal solution onto tin-doped indium oxide (ITO) substrates by layer-by-layer electrostatic deposition with aqueous carboxymethyl-cellulose sodium salt binder. Calcination produces purely inorganic mesoporous films (average thickness increase per layer of 1 nm) of chromia Cr2O3. When immersed in aqueous carbonate buffer at pH 10 and investigated by cyclic voltammetry, a chemically reversible oxidation is observed because of a conductive layer at the chromia surface (formed during initial potential cycling). This is attributed to a surface CrIII/IV process. At more positive potentials higher oxidation states are accessible before film dissolution. The effects of film thickness and pH on voltammetric responses are studied. X-Ray photoelectron spectroscopy (XPS) evidence for higher chromium oxidation states is obtained. ITO junction experiments are employed to reveal surface conduction by CrIII/IV and CrIV/V ‘mobile surface states’ and an estimate is obtained for the apparent CrIII/IV charge surface diffusion coefficient Dapp = 10–13 m2 s–1. The junction experiment distinguishes mobile surface redox sites from energetically distinct deeper-sitting ‘trapped states’.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献