Experimental determination of the dissolution kinetics of zero-valent iron in the presence of organic complexants

Author:

Pierce Eric M.,Wellman Dawn M.,Lodge Alexander M.,Rodriguez Elsa A.

Abstract

Environmental context. Iron metal is being considered as a material to be used for the treatment of groundwater contaminated with toxic metals and organics. Although time-dependant information is available, predicting the long-term behaviour of this material has been complicated by the build-up of rust or other alteration phases on the surface of Fe metal. In addition to the build-up of rust, changes to important environmental factors also complicate these types of predictions. The research discussed in this paper uses a non-traditional experimental technique to isolate the impact of specific environmental factors (i.e. pH, temperature) and organic complexants on the dissolution of Fe metal. Abstract. The geochemical cycling of iron, the reactivity of iron minerals and, more recently, the reactivity of zero valent iron (α-Fe), have been the subject of numerous investigations for over more than three decades. These investigations provide a wealth of knowledge regarding the effect of pH, temperature, chelating agents etc. on the reactivity and mechanism(s) of dissolution for α-Fe and iron oxide/oxyhydroxide minerals. However, most investigations have been conducted under static conditions that promote the formation of a partially oxidised surface film (e.g. passivating layer). In the presence of a passivating layer, the proposed dissolution mechanisms are vastly different and are based on the composition of the partially oxidised surface film. The objective of this study was to quantify the dissolution of α-Fe under conditions that maintain the pO2 at a relatively constant level and minimise the formation of a passivating layer on the metal surface. Single-pass flow-through tests were conducted under conditions of relatively constant dissolved O2 [O2(aq)] over the pH(23°C) range from 7 to 12 and temperature range from 23 to 90°C in the presence of ethylenediamine tetraacetic acid (EDTA) and ethylenediamine di-O-hydroxyphenylacetic acid (EDDHA) to maintain dilute conditions and minimise the formation of a partially oxidised surface film and Fe-bearing secondary phase(s) during testing. Although more information is needed, these results suggest the adsorption of EDTA and EDDHA, or the diffusion of the oxidised Fe–organic complex from the surface of α-Fe, is the rate-limiting step in the dissolution reaction. Results also suggest that the rate of dissolution is independent of pH, has a non-linear dependence on the concentration of organic complexant, and the forward dissolution rate for α-Fe is as much as three orders of magnitude greater than when a passive film and corrosion products are present.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3