Influence of Water Stress on Water Relations and Growth of a Tropical (C4) Grass, Panicum maximum var. trichoglume

Author:

Ng TT,Wilson JR,Ludlow MM

Abstract

The effects of recurring cycles of short-term water stress on the water relations and growth of P. maximum var. trichoglume in pots of soil were investigated under controlled conditions. As soil water content decreased there was an increase in the resistance to water movement in the soil-plant system. Leaf stomatal resistance increased and concomitantly transpiration rate decreased when soil water content fell below 37 % (soil water potential of - 1 .0 bars) and leaf water potentials were less than - 6 bars. The leaf water potential at wilting (- 8 to - 10 bars) and the relation between leaf water potential and relative water content changed with leaf position on the tiller. The death of early-formed leaves on the plants was accelerated by water stress but, in contrast, the later-formed leaves died more rapidly in the control (unstressed) treatment so that finally the control plants had a higher proportion of dead leaves. Plant growth was reduced at soil water contents above the permanent wilting point. Reduction in net assimilation rate was the main determinant of lower relative growth rate of stressed plants over the initial cycles of stress but subsequently, as leaf area expansion was reduced, leaf area ratio also had a significant influence. Water stress influenced growth directly, and also indirectly via its effect on plant development (ontogeny). Two techniques were used to separate the direct from the indirect effects on relative growth rate Some published data which suggest a stimulation of growth rate after the relief of stress are re-interpreted and the effect is shown to be due mainly to differences in ontogeny between stressed and control treatments

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3