Early generation selection in wheat. I. Yield potential

Author:

Quail KJ,Fischer RA,Wood JT

Abstract

F3 single plant traits were tested as possible selection criteria for increasing yield potential. F3 plants were grown spaced in a glasshouse, while yield was measured in southern New South Wales under irrigation and optimum management. Thc population studied comprised 220 F1-derived lines taken at random from a multiple convergent cross amongst 16 parents representing elite CTMMYT germplasm of the mid 1970s but containing diversity for major dwarfing genes, maturity, leaf angle and other traits. More than 50 traits were determined, comprising numerical components of yield, size and morphology, partitioning ratios, development rates and physiological activities. All F3 traits showed significant genotypic variation which was usually greater for progeny lines than for parents although only occasionally significantly so. Broad sense heritability was generally moderate to high.F3 lines were advanced by single seed descent for replicated F7 and F8 yield experiments, two in each of 1982 and 1983. In each experiment 60-68 progeny lines chosen at random were tested; 44 lines were common to all experiments. Plot size was 8 rows X 5 m, and edge rows and plot ends were discarded. Yield levels were high (mean yield 5.9 t h a 1 at 10Yo moisture) and largely free of interference from lodging and disease. The progeny main effect on grain yield was highly significant, but no progeny line significantly outyielded the best parent. Best correlations with progeny grain yield were given by F3 plant height (r= -0.31 to -0.50 across experiments), F3 kernel weight (r= -0.03 to -0.44), F3 harvest index (r = 0.18 to 0.5 l), F3 leaf angle (r = -0.13 to -0.40, erect leaves favouring high yicld) and F3 spike number (r=0.08 to 0.40). Retrospective selection in F3 using these traits singly at a selection intensity of 25% gave increases in population mean yield (0 to + 12%) and in the proportion of high yielding lines (doubled in some cases), but only selection in F3 for reduced stature is considered worthwhile for advancing yield potential. It is suggested that the ineffectiveness of F3 selection is largely due to genotype by environment interaction, along with the complex multigenic nature of grain yicld.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3