Residual forest structure influences behaviour of Pacific marten (

Author:

Volkmann Logan A.,Hodges Karen E.

Abstract

Wildfires are broad-scale disturbances in North American forests, with impacts that persist for many decades. Further disturbance from post-fire salvage logging is extensively modifying burned landscapes. The removal of habitat structure by fire and salvage logging may affect the persistence of forest-specialist wildlife such as Pacific marten (Martes caurina). However, it is unclear which resources are important to marten on burned landscapes. We used snow tracking and habitat surveys to examine marten habitat selection after three large fires in north-central Washington, USA (10–13 years post-fire), and central British Columbia, Canada (1–2 and 6–9 years post-fire). We developed site-scale habitat models to explain marten foraging and scent-marking post-fire, and assessed further structural changes from salvage logging. Foraging marten chose sites with lower burn severity, greater canopy closure, more vertical structures (trees, snags, saplings, and shrubs), and greater moss/lichen cover than what was generally available. When scent-marking, marten selected structurally-complex sites with abundant deadfall or saplings. Marten moved more quickly when canopy cover was sparse, and rarely used salvage-logged areas. Our results suggest that marten rely on residual habitat structure within large burns, and that secondary disturbance from salvage logging is substantially more harmful to marten than the original fire.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Reference127 articles.

1. Mega-fires, tipping points and ecosystem services: managing forests and woodlands in an uncertain future.;Forest Ecology and Management,2013

2. Agee JK (Ed.) (1993) ‘Fire ecology of Pacific Northwest forests.’ (Island Press: Washington, DC)

3. The landscape ecology of western forest fire regimes.;Northwest Science,1998

4. Temporal changes in habitat use by snowshoe hares and red squirrels during post-fire and post-logging forest succession.;Forest Ecology and Management,2014

5. Avoiding pitfalls when using information-theoretic methods.;Journal of Wildlife Management,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3