Author:
Chan Bun,Morris Michael,Radom Leo
Abstract
High-level composite, ab initio and density functional theory (DFT) procedures have been employed to study O–H bond dissociation energies (BDEs), as well as radical stabilization energies (RSEs) in the oxygen-centred radicals that are formed in the dissociation of the O–H bonds. Benchmark values are provided by Wn results up to W3.2 and W4.x. We are able to recommend revised BDE values for FO–H (415.6 ± 3 kJ mol–1), MeC(O)O–H (459.8 ± 6 kJ mol–1) and CF3CH2O–H (461.9 ± 6 kJ mol–1) on the basis of high-level calculations. We find that Gn-type procedures are generally reliable and cost-effective, and that some contemporary functionals and double-hybrid DFT procedures also provide adequate O–H BDEs/RSEs. We note that the variations in the O–H BDEs are associated with variations in the stabilities of not only the radicals but also the closed-shell precursor molecules. Most substituents destabilize both species, with σ-electron-withdrawing groups having larger destabilizing effects, while π-electron acceptors are stabilizing. Although there is little correlation between the stabilizing/destabilizing effects of the substituents and the RSEs, we present some general patterns in the RSEs that emerge from the present study.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献