Predicting the effect of immunocontraceptive recombinant murine cytomegalovirus on population outbreaks of house mice (Mus musculus domesticus) in mallee wheatlands

Author:

Arthur A. D.,Pech R. P.,Singleton G. R.

Abstract

Virally vectored immunocontraception using a modified murine cytomegalovirus (MCMV) is being developed for the control of house mice in Australia. In this paper, we develop disease–host models using a combination of laboratory and field data. We then combine these models with a model of a previous mouse population outbreak to explore the likely effectiveness of modified MCMV for controlling mice. Models of homogeneous mixing with and without vertical/pseudovertical transmission provided reasonable fits to field serological data collected during the onset and development of a mouse population outbreak in south-eastern Australia. Both models include the high transmission rate of MCMV suggested by the data. We found no strong support for non-linear contact rates or heterogeneous mixing. When applied to a past outbreak of mice both models gave similar results and suggested that immunocontraceptive MCMV could be effective at reducing agricultural damage to acceptable levels. Successful control was still possible when lags in the development of infertility of up to 10 weeks were added to the model, provided high levels of infertility were achieved. These lags were added because mice can become pregnant just before becoming infertile – the resultant litter would not emerge for 6–7 weeks. Trade-offs between two parameters that could be altered by engineering strains of MCMV – the level of infertility in infected mice and the virus transmission rate – were explored and suggest that a variety of parameter combinations could produce successful control. Our results are encouraging for the future development of virally vectored immunocontraception control of house mice, but future work will need to consider some of the assumptions of these single-strain models.

Publisher

CSIRO Publishing

Subject

Management, Monitoring, Policy and Law,Ecology, Evolution, Behavior and Systematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3