Using geomorphology to assess contour furrowing in western New South Wales, Australia

Author:

Wakelin-King Gresley

Abstract

This study examines landscape rehabilitation treatments installed 20–40 years ago in the Western Catchment of NSW. Treatment outcomes were assessed using geomorphic criteria, because geomorphic processes are fundamental to ecological permanence. Contour furrowing creates artificial runoff-runon sets which intercept runoff (resistance to flow by windrows microrelief and surface roughness) and promote infiltration (artificial permeability by ripping). As originally conceived, after windrows subside, flow resistance would be afforded by surface roughness under belts of vegetation. This study shows that rehabilitation treatments have a more complex relationship with the landscape than this would suggest, and that the final effect of the treatment depends on the geomorphic processes natural to the site. Treatment design should therefore be site-specific. The relevant aspects of treatment design are site location, runoff : runon ratio (expressed as furrow spacing and furrow length), furrow placement, and post-treatment management. Some long-term successes are documented. In ironstone ridge country affected by impermeable hard-setting soils, furrowing creates artificial permeability, allowing plant germination; plant material in the soil reverses hard-setting and establishes self-sustaining permeability. In stony gilgai country furrowing through vegetated patches can aid in re-establishing vegetation, but furrowing through stony runoff patches only diminishes, rather than improves, landscape function. Other landscape types will have different key attributes. In all cases, selection of appropriate sites for rehabilitation treatment is of primary importance. The 1990s NSW Soil Conservation Service best-practice included a specialised furrower, surveying techniques for accurate furrow placement along the contour, staggered gaps along each furrow line to reduce risks of gullying by windrow breakthrough, and post-treatment management of total grazing pressure. New guidelines for treatment design developed from this study include determining for each site the optimum runoff:runon ratio (which varies according to climate, gradient, vegetation, and regolith), and matching furrow spacing and furrow/gap length to local runoff:runon ratios. In stony gilgai country, furrow placement should be along the contour but within non-stony patches; elsewhere, placement should be rigorously along the contour. In ironstone ridge country, a greater runoff:runon ratio, commensurate with the area’s apparently larger patch scale, can be achieved by having more gap than furrow along each furrow line. No single rehabilitation technique will fit all landscape types, and these guidelines will ideally be developed further with investigation of other landscapes.

Publisher

CSIRO Publishing

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3