Comprehensive analysis revealed that titanium dioxide nanoparticles could strengthen the resistance of apple rootstock B9 to saline-alkali stress

Author:

Xian Xulin,Zhang Zhongxing,Li Cailong,Ding Liang,Guo Haichao,Zhai Jietao,Wang YanxiuORCID

Abstract

Apple growth and development can be adversely affected by saline–alkali stress, which has become a significant factor restricting the high yield of the apple industry. In recent years, nanomaterials have become a potential source for plant growth and development. Titanium dioxide nanoparticles (TiO2NPs) play an important role in multiple plant development processes, including mitigating environmental stress. In this study, one-year-old apple rootstock B9 stem cuttings were used as research objects. Different concentrations of TiO2NPs were applied to the roots before saline–alkali treatment. Principal component analysis showed that 1 g kg−1 TiO2NPs treatment had the best effect in alleviating the stress for B9. It significantly reduced the damage to B9 under salt–alkali stress, increased the content of photosynthetic pigment, enhanced the performance of Photosystem II, and promoted photosynthesis. At the same time, the content of K+ was increased, and the ion toxicity was alleviated. In addition, TiO2NPs have also been shown to reduce B9 cell damage and lipid peroxidation, increase antioxidant enzyme activity, and regulate the accumulation of solutes. Overall, this study provides a theoretical basis for TiO2NPs to mitigate the adverse effects of plants under saline–alkali stress and provides useful insights for managing other plants affected by global salinity and alkalinity.

Funder

Special Fund for National Natural Science Foundation of China

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3