Kinetics and Mechanism of Oxidation of d-Penicillamine in Acidified Bromate and Aqueous Bromine

Author:

Chipiso Kudzanai,Simoyi Reuben H.

Abstract

The oxidation of the biologically active compound d-penicillamine (Depen) by acidic bromate has been studied. The stoichiometry of the reaction is strictly 1 : 1, in which Depen is oxidized only as far as the sulfonic acid with no cleavage of the C–S bond to yield sulfate. Electrospray ionization spectroscopy shows that Depen is oxidized through addition of oxygen atoms on the sulfur centre to successively yield sulfenic and sulfinic acids before the product sulfonic acid. In conditions of excess Depen over the oxidant, sulfenic acid was not observed. Instead, nearly quantitative formation of the dimer was obtained. The dimer, which is the d-penicillamine disulfide species, was formed from a reaction of the putative highly electrophilic sulfenic acid with unreacted Depen in a condensation-type reaction and not through a radical-mediated pathway. Further oxidation of the dimer is slow because it is the most stable intermediate in the oxidation of Depen. In excess oxidant conditions, negligible dimer formation is observed. The reaction of bromine with Depen gives a stoichiometry of 3 : 1 with the same sulfonic acid product. This reaction is so fast that it is essentially diffusion controlled. Our stopped-flow instrument could not capture the oxidation by the first 2 moles of bromine, only the section of the reaction in which the sulfinic acid is oxidized to sulfonic acid.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3