1H NMR metabolomics of Eisenia fetida responses after sub-lethal exposure to perfluorooctanoic acid and perfluorooctane sulfonate

Author:

Lankadurai Brian P.,Simpson André J.,Simpson Myrna J.

Abstract

Environmental contextPerfluoroalkyl acids are persistent environmental contaminants that are also found in soils. We use a metabolomics approach based on nuclear magnetic resonance analyses to investigate the responses of earthworms to exposure to sub-lethal levels of two perfluoroalkyl acids. The results indicate that this metabolomics approach is able to delineate the toxic mode of action of contaminants present at sub-lethal levels. AbstractMetabolomics entails the analysis of endogenous metabolites within organisms exposed to an external stressor such as an environmental contaminant. We utilised 1H NMR-based metabolomics to elucidate sub-lethal toxic mechanisms of Eisenia fetida earthworms after exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Earthworms were exposed to a range of concentrations of PFOA (6.25 to 50 μg cm–2) and PFOS (3.125 to 25 μg cm–2) by contact tests for 2 days. Earthworm tissues were extracted using a mixture of chloroform, methanol and water, and the polar fraction was analysed by 1H NMR spectroscopy. NMR-based metabolomic analysis revealed heightened E. fetida toxic responses with higher PFOA and PFOS exposure concentrations. Principal component analysis (PCA) exhibited significant separation between control and exposed earthworms along PC1 for all PFOA and PFOS exposure concentrations. Leucine, arginine, glutamate, maltose and adenosine triphosphate (ATP) are potential indicators of PFOA and PFOS exposure as these metabolite concentrations fluctuated with exposure. Our data also indicate that PFOA and PFOS exposure may increase fatty acid oxidation and interrupt ATP synthesis due to a disruption in the inner mitochondrial membrane structure. NMR-based metabolomics has promise as an insightful tool for elucidating the environmental toxicology of sub-lethal contaminant exposure.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3