Using the genetic characteristics of Neisseria gonorrhoeae strains with decreased susceptibility to cefixime to develop a molecular assay to predict cefixime susceptibility

Author:

Deng XiaomengORCID,Allan-Blitz Lao-Tzu,Klausner Jeffrey D.

Abstract

Background: In the last two decades, gonococcal strains with decreased cefixime susceptibility and cases of clinical treatment failure have been reported worldwide. Gonococcal strains with a cefixime minimum inhibitory concentration (MIC) ≥0.12 µg mL−1 are significantly more likely to fail cefixime treatment than strains with an MIC <0.12 µg mL−1. Various researchers have described the molecular characteristics of gonococcal strains with reduced cefixime susceptibility, and many have proposed critical molecular alterations that contribute to this decreased susceptibility. Methods: A systematic review of all published articles in PubMed through 1 November 2018 was conducted that report findings on the molecular characteristics and potential mechanisms of resistance for gonococcal strains with decreased cefixime susceptibility. The findings were summarised and suggestions were made for the development of a molecular-based cefixime susceptibility assay. Results: The penicillin-binding protein 2 (PBP2) encoded by the penA gene is the primary target of cefixime antimicrobial activity. Decreased cefixime susceptibility is conferred by altered penA genes with mosaic substitute sequences from other Neisseria (N.) species (identifiable by alterations at amino acid position 375–377) or by non-mosaic penA genes with at least one of the critical amino acid substitutions at positions 501, 542 and 551. Based on this review of 415 international cefixime decreased susceptible N. gonorrhoeae isolates, the estimated sensitivity for an assay detecting the aforementioned amino acid alterations would be 99.5% (413/415). Conclusions: Targeting mosaic penA and critical amino acid substitutions in non-mosaic penA are necessary and may be sufficient to produce a robust, universal molecular assay to predict cefixime susceptibility.

Publisher

CSIRO Publishing

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3