Influence of chemical properties on nitrogen mineralization and nitrification in podzolized sands. Implications for forest management

Author:

Carlyle JC,Lowther JR,Smethurst PJ,Nambiar EKS

Abstract

The relationship between selected chemical properties and nitrogen mineralization and nitrification was examined in soils collected from 39 sites of varying history. All sites were on podzolized sands; such soils represent more than 95% of the P. radiata growing area in south-east of South Australia/western Victoria. Given their uniformity in texture and similarity in pedogenesis, the organic matter concentrations of the sampled soils were highly variable (loss-on-ignition 0.8-10.2%). Total nitrogen was highly correlated with loss-on-ignition (r2 = 0.95, P<0.001). Nitrogen mineralization was correlated neither with total nitrogen nor loss-on-ignitition (i.e. P > 0.05), but was correlated with organic phosphorus (r2 = 0 70, P < 0.001), suggesting a major effect of phosphorus on nitrogen mineralization in these soils. On the basis of nitrate production during a 56-day aerobic incubation of disturbed soil, 18 soils were classed as strongly nitrifying (having a high potential to nitrify) and 18 as weakly nitrifying (having a low potential to nitrify). This separation reflected differences in other soil properties, with discriminant analysis giving a 91.7% correct classification into the two groups using only pH and Bray (II) extractable phosphorus for discrimination. Strongly and weakly nitrifying groups could also be discriminated on the basis of their value/chroma rating (after ignition), with a 94.4% probability of correct classification. Within each classification, nitrogen mineralization was correlated with total nitrogen (r2 =0.59 and 0.65, P< 0.001, for strongly and weakly nitrifying soils, respectively) but with a different relationship in each case. The significance of this difference in nitrogen dynamics is discussed in relation to site-specific forest management practices.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3