Describing the adsorption of copper, zinc and lead on a variable charge mineral surface

Author:

Barrow NJ,Bowden JW,Posner AM,Quirk JP

Abstract

The ability of a model to describe quantitatively the adsorption of copper, lead and zinc on goethite was tested. The model was able to describe both the increase in adsorption of metals with increasing pH and the release of protons that accompanied adsorption. For copper and zinc, MeOH+ were the adsorbing species. Part of the increase in adsorption with increasing pH arose because these ions increase in concentration with pH. For lead, Pb2+ ions appeared to be adsorbed, and in this case the increase in adsorption with pH was entirely due to the decreased charge on the surface and thus decreased repulsion. For all three metals, the MeCl+ ions also appeared to be adsorbed, and this explained higher adsorption from chloride solution than from nitrate solutions. The observed release of protons accompanying adsorption was matched by moving the plane of adsorption of metal ions relative to that of the H+ and OH- ions. When the two planes were close, the proton release was almost equivalent to the charge on the metal ions; as the distance increased, proton release decreased.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3