Voltage-Dependence of Extracellular Ca2+-Induced Modification in Properties of the Inward Rectifying K+ Channels in the Plasma Membrane of Mesophyll Protoplasts of Avena sativa

Author:

Kourie J

Abstract

Data obtained using the whole-celi configuration of the patch-clamp technique reveal that characteristics of the inward rectifying K+ current across the plasma membrane of protoplasts isolated from mesophyll cells of leaves of oat (Avena sativa) are modified by increasing concentrations or removing the extracellular Ca2+. The whole-cell membrane current reveals two components. The first component an initial current II* which is the sum of two currents: (a) a linear ohmic leak current passing through non-gated channels, liNGC, and (b) a rectifying inward K+ current passing through inward rectifying gated K+ channels, IKi, that are instantaneously open. The second component of the membrane current at the steady state Iss is a time-dependent K+ current IKss defined as Iss-IiNGC and passes through inward rectifying gated K+ channels. The tail K+ current, IKT, is also defined as IT-IiNGC. Raising external calcium concentration, [Ca2+]o, from 0.1 mM to 10 mM blocked the inward rectifying currents IKi, IKss and IKT. The voltage-dependence of the activation time constant (τa) for time-dependent KC current IKss was not altered significantly by increasing [Ca2+]o whereas the deactivation time constant (τd) of the IKT increased from 16 ms to 30 ms at a Vm of -100 mV. Removal of [Ca2+]o increased the amplitude and altered the characteristics of the inward rectifying K+ current. Ten minutes after the removal of [Ca2+]o the increase in IKi was 3.5-fold larger than the increase in IKss. Furthermore, removing [Ca2+]o hastened the activation of IKss and the deactivation of IKT. However, the deactivation time constant (Td) remained dependent on membrane voltage (Vm). Extracellular Ca2+ may modulate the function of mesophyll cells by regulating K+ transport through the inward rectifying K+ channels and this may have significant implications for photosynthesis and cell expansion.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3