Prediction of nutrient flows with potential impacts on the environment in a rabbit farm: a modelling approach

Author:

Méda Bertrand,Fortun-Lamothe Laurence,Hassouna Mélynda

Abstract

To face the increasing demand for animal products throughout the world, livestock-farming systems have been intensified. This intensification has proven to be economically effective but is noted for its negative impact on the environment through the production of ammonia (NH3) and the greenhouse gases nitrous oxide (N2O) and methane. In this context, dynamic models are useful tools to evaluate the effects of farming practice on nutrient flows and losses to the environment. This paper presents the development of a model simulating the flows of nitrogen (N) and phosphorus (P) in a rabbit production farm. The model is comprised of two submodels. The first submodel simulates the number of animals in the farm (births, deaths, culling of does/fatteners) and their respective performances (growth, feed intake, milk production). The second one simulates the excretion of N and P for each animal category using a mass-balance approach between intake (feed and/or milk intake) and exports (body deposition, milk production, gestation). Specific emission factors are then applied to the excreted N amounts to estimate total N, NH3 and N2O losses in the housing unit and during manure storage. Methane emissions from enteric fermentations and manure are also estimated. A simulation example based on French technico-economic data illustrates how the model could be used to study the dynamics of animal populations within the system and of nutrient flows. Finally, there is a need for new knowledge (experimental data) to improve the model and help design more sustainable rabbit production systems by identifying best practices that minimise environmental impacts.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3