Candidate gene-based association genetics analysis of herbage quality traits in perennial ryegrass (Lolium perenne L.)

Author:

Pembleton L. W.,Wang J.,Cogan N. O. I.,Pryce J. E.,Ye G.,Bandaranayake C. K.,Hand M. L.,Baillie R. C.,Drayton M. C.,Lawless K.,Erb S.,Dobrowolski M. P.,Sawbridge T. I.,Spangenberg G. C.,Smith K. F.,Forster J. W.

Abstract

Due to the complex genetic architecture of perennial ryegrass, based on an obligate outbreeding reproductive habit, association-mapping approaches to genetic dissection offer the potential for effective identification of genetic marker–trait linkages. Associations with genes for agronomic characters, such as components of herbage nutritive quality, may then be utilised for accelerated cultivar improvement using advanced molecular breeding practices. The objective of the present study was to evaluate the presence of such associations for a broad range of candidate genes involved in pathways of cell wall biosynthesis and carbohydrate metabolism. An association-mapping panel composed from a broad range of non-domesticated and varietal sources was assembled and assessed for genome-wide sequence polymorphism. Removal of significant population structure obtained a diverse meta-population (220 genotypes) suitable for association studies. The meta-population was established with replication as a spaced-plant field trial. All plants were genotyped with a cohort of candidate gene-derived single nucleotide polymorphism (SNP) markers. Herbage samples were harvested at both vegetative and reproductive stages and were measured for a range of herbage quality traits using near infrared reflectance spectroscopy. Significant associations were identified for ~50% of the genes, accounting for small but significant components of phenotypic variance. The identities of genes with associated SNPs were largely consistent with detailed knowledge of ryegrass biology, and they are interpreted in terms of known biochemical and physiological processes. Magnitudes of effect of observed marker–trait gene association were small, indicating that future activities should focus on genome-wide association studies in order to identify the majority of causal mutations for complex traits such as forage quality.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3