Author:
Lyons David J.,McElnea Angus E.,Finch Niki P.,Tallis Claire
Abstract
Australian Standard methods for acid sulfate soils (ASS) require the grinding of soil to <0.075 mm. A ring-mill or similar grinding apparatus is therefore needed. We investigated whether ring-mill grinding is required for accurate and reproducible test results and associated calculations (such as acid–base accounting), or if more conventional fine-grinding (i.e. <0.5 mm) is sufficient to obtain acceptable results. An initial experiment (unreplicated) was conducted on 52 soils comparing ring-mill and fine-grinding treatments, and this information was used to formulate final, more detailed experimental work on five soils from the same dataset. Soils from an ASS survey in coastal central Queensland were chosen to reflect the range of chemical properties found in ASS. Soils were analysed by the Chromium and SPOCAS suite of tests for the two grinding treatments. For those tests that follow a relatively vigorous extraction carried out with heating [such as chromium-reducible S, peroxide-oxidisable S and acid-neutralising capacity by back titration (ANCBT)], results were similar for the two grinding treatments. However, for those tests that follow a relatively mild extraction without heating (such as KCl-extractable S, HCl-extractable S and titratable actual acidity), significantly higher values (P < 0.05) were obtained for ring-mill ground soil. There was no significant difference in calculated net acidity between ring-mill grinding and fine-grinding for soils without excess ANC. For self-neutralising soils, fine-grinding gave significantly lower values of ANC than ring-mill grinding. It is uncertain whether ring-mill grinding gives a true reflection of the ANC available in the natural environment.
Subject
Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)