Leaf structural responses to pre-industrial, current and elevated atmospheric [CO2] and temperature affect leaf function in Eucalyptus sideroxylon

Author:

Smith Renee A.,Lewis James D.,Ghannoum Oula,Tissue David T.

Abstract

Leaf structure and chemistry both play critical roles in regulating photosynthesis. Yet, a key unresolved issue in climate change research is the role of changes in leaf structure in photosynthetic responses to temperature and atmospheric CO2 concentration ([CO2]), ranging from pre-industrial to future levels. We examined the interactive effects of [CO2] (290, 400 and 650 μL L–1) and temperature (ambient, ambient +4°C) on leaf structural and chemical traits that regulate photosynthesis in Eucalyptus sideroxylon A.Cunn. ex Woolls. Rising [CO2] from pre-industrial to elevated levels increased light-saturated net photosynthetic rates (Asat), but reduced photosynthetic capacity (Amax). Changes in leaf N per unit area (Narea) and the number of palisade layers accounted for 56 and 14% of the variation in Amax, respectively, associated with changes in leaf mass per area. Elevated temperature increased stomatal frequency, but did not affect Amax. Further, rising [CO2] and temperature generally did not interactively affect leaf structure or function. These results suggest that leaf Narea and the number of palisade layers are the key chemical and structural factors regulating photosynthetic capacity of E. sideroxylon under rising [CO2], whereas the lack of photosynthetic responses to elevated temperature may reflect the limited effect of temperature on leaf structure and chemistry.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3