In Pursuit of Fluorinated Sigma Receptor Ligand Candidates Related to [18F]-FPS

Author:

Jwad Rasha S.,Pang Alan H. C.,Hunter Luke,Read Roger W.

Abstract

This paper describes the synthesis of N-arylmethyl(1-benzyl) and N-aroyl(1-benzoyl) 4-(4-fluoromethylphenoxymethyl)piperidines as potential sigma receptor ligands analogous to the potent and highly selective sigma-1 ligand [18F]-FPS, but with enhanced or alternative binding and transport profiles. The synthesis involves N-aroylation of 4-hydroxmethylpiperidine or ethyl nipecotate, functional group manipulation of the ester group or simple activation of the hydroxyl group to introduce the phenoxy component, and subsequent functional group manipulation to reduce the amide group and introduce the fluorine into the fluoromethyl substituent. In its development, the synthesis was found to require early N-aroylation of the piperidine precursor to avoid complications due to anchimeric assistance by its nitrogen in subsequent displacement reactions. New evidence is presented on the pathway followed in a literature report of direct displacement of a benzylic hydroxyl group by fluoride ion under Appel-like conditions. Relevant to the literature report, the halide ion in the fluoromethylphenoxy 1-benzylpiperidine derivatives was surprisingly labile to hydrolytic displacement on chromatography and this aspect is worthy of further study. Moreover, the NMR spectra of the amides were complicated by geometric isomerism about the amide C(O)–N bond, but detailed analysis of spectra from 2-anisoyl derivatives allowed the assignment of diastereomeric contributors to consistent, secondary atropisomerism about the aryl–C(O) bond.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In vitro and in vivo sigma 1 receptor imaging studies in different disease states;RSC Medicinal Chemistry;2021

2. Synthesis and variable temperature NMR study of glucose based 1,2,3-triazole;INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3