Satellite and telecommunication alert system for foot-hold trapping

Author:

Meek Paul D.ORCID,Ballard GuyORCID,Milne Heath,Croft Simon,Lawson Geoff,Fleming Peter J. S.ORCID

Abstract

Abstract ContextImproving the welfare outcomes for captured animals is critically important and should underpin ‘best-practice’ trapping. Most Australian States and Territories have regulations and guidelines that form a legal framework for the maximum number of hours an animal can be restrained in a trap. Because servicing all traps within preferred time frames (less than 24h) can be logistically difficult or is considered undesirable for efficacy reasons, some jurisdictions have adopted relatively long trap-checking intervals (up to 72 h). AimsWe developed and tested the signal transmission and alert efficacy of a foot hold-trap alert system, based on Celium technology, so as to advise trappers of the activation of individual foot-hold traps, even in remote locations. MethodsWe refined the Celium trap-alert system and designed a below-ground wireless node that transmits a message via satellite or by using the cellular system when a foot-hold trap is sprung. We tested signal transmission and alert efficacy in three locations, with a focus in Australia. Key resultsTransmission of signals from nodes to hubs and to a smart-phone application were used to resolve interference problems and to identify signal limitations and strengths. During the capture of 34 dingoes, 91% of captures resulted in an alert being received. False negatives were attributed to technical issues with nearby transmitters swamping signals, and software problems that have since been resolved. In 40 captures of dogs and foxes, only one trap-alert transmitter (mole) was uncovered by a target animal and no devices were damaged by animals post-capture. ConclusionsThis cable-less trap-alert system successfully uses both cellular and satellite networks to transmit messages from desert and coastal locations to trappers, in Australia. We confirmed that this trap-alert system is not detected by target predators in the areas tested and can be effectively used to alert trappers when traps have been sprung. ImplicationsThis trap-alert system provides a tool to improve welfare outcomes for trapped target and non-target animals through Australia and New Zealand and wherever trapping occurs. It, furthermore, provides a solution to checking traps daily when the distance to and between traps cannot be covered within an appropriate time frame. Although trap alerts can never replace the value of daily trap checking by the trapper, they provide a solution to a management problem, namely, one of accessibility to sites.

Publisher

CSIRO Publishing

Subject

Management, Monitoring, Policy and Law,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Why humans kill animals and why we cannot avoid it;Science of The Total Environment;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3